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Abstract. Discontinuous magnetic metal/insulator multilayers are formed of equally spaced layers of
magnetic particles embedded in an insulating matrix. Their electronic transport properties result from
spin-polarized electron tunneling and Coulomb blockade effect. The current-in-plane (CIP) and current-
perpendicular-to plane (CPP) resistances change by several orders of magnitude when the thicknesses of
the metallic or insulating layers are varied. Calculations of the shape of the current lines in these multi-
layers are presented. It is shown that pure CIP or CPP transport occur in these systems only when the
CIP or CPP resistances are very different in magnitude. If the two resistances are of the same order of
magnitude, then the measured transport properties in both geometries are a combination of CIP and CPP
transport.

PACS. 73.40.Rw Metal-insulator-metal structures – 73.40.Gk Tunneling – 73.61.-r Electrical properties
of specific thin films

1 Introduction

Discontinuous magnetic metal/insulator multilayers con-
stitute a new class of metal/insulator systems [1,2], in-
termediate between tunnel junctions [3] and CERMET
films [4]. They are grown as metallic multilayers by se-
quential deposition of metallic and insulating layers. For
certain couples of metal/insulating materials, the metal
does not wet on the insulating layers and coalesce in the
form of disjointed metallic patches. The resulting struc-
ture consists of layers of magnetic metallic particles em-
bedded in an insulating matrix. Examples of multilayers
having such a structure and which exhibit magnetoresis-
tance effects associated with spin-polarized tunneling are
(Co/SiO2) [1], (CoFe/HfO2) [2], (Co/ZrO2). As in Cer-
mets, their transport properties result from a combination
of spin-polarized electron tunneling through the insulat-
ing barriers separating neighboring metallic particles and
of Coulomb blockade effect [5]. In contrast to Cermets and
because of their particular structure, these mulilayers have
very anisotropic transport properties.

In the following of the paper, we consider a discon-
tinuous metal/insulator multilayer comprising n metallic
layers sandwiched between (n + 1) oxide layers. We sup-
pose that two metallic electrodes, a few millimeters apart,
have been deposited on top of the structure for CIP trans-
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port measurement. For simplicity, we suppose here that
two-point measurements are performed. We define RCIP

as the CIP resistance measured between these two elec-
trodes. Similarly, we assume that two metallic electrodes
have been placed, one at the bottom, the other at the top
of the structure for CPP-transport measurements. We de-
fine RCPP as the resistance measured between these two
electrodes. Several transport regimes can be qualitatively
distinguished depending on the relative values ofRCIP and
RCPP (see Fig. 1):

For the CIP measurements (Fig. 1a):

1. If RCIP � RCPP, the electrons only flow in the top
metallic plane of particles. The measured CIP resis-
tance corresponds then to the resistance of the first
plane of metallic particles only.

2. If RCIP � RCPP, just below the electrodes, the elec-
trons spread over all metallic layers and then flow in
parallel within each metallic planes. In this limit, the
current is equal in all planes. The measured resistance
corresponds then to the resistance of all the metallic
layers connected in parallel.

3. If RCIP ≈ RCPP, the situation is intermediate between
the two previous cases. The electrons flow in the vari-
ous planes of particles but with unequal intensities.

The two first cases correspond to pure CIP regimes
whereas the third one is a combination of CIP and CPP
characteristics.
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Fig. 1. Qualitative illustration of the three possible regimes
of CIP transport (left (a)) and CPP transport (right (b)) in
discontinuous multilayers.

Similarly, in CPP geometry, the same three cases lead
to three different regimes (Fig. 1b):

1. If RCIP � RCPP, in the first metallic layers, the elec-
trons spread over the whole area of the sample to min-
imize the perpendicular resistance as much as possible
and then flow in parallel in the perpendicular direc-
tion across the thickness of the structure, the layers
are nearly equipotentials. The whole area of the sam-
ple participates here to the CPP conduction.

2. If RCIP � RCPP, the electrons do not spread aside of
the metallic electrodes. They just flow in parallel in
the direction perpendicular to the interfaces below the
electrodes. In that case, the area of the sample that
is active for the perpendicular conduction is just the
area of the CPP metallic electrodes.

3. If RCIP ≈ RCPP, a combination of the two previous
cases occurs. As they flow towards the median plane of
the structure, the electrons propagate also within the
metallic planes. Below the median plane, they concen-
trate again towards the bottom metallic electrode (see
Fig. 1b).

The two first cases correspond to pure CPP transport sit-
uations whereas the third one is a combination of CIP and
CPP transport characteristics.

From an experimental point of view, the in-plane
resistance can be changed over several orders of mag-
nitude by varying the nominal thickness of the metal-
lic layers. This is illustrated in Figure 2 in the case of
(Co t(nm)/ZrO2 30 nm)20. The CIP resistance was mea-
sured at 300 K and 97 K with a four-point probe. These
curves indicate the presence of a percolation threshold in
each metallic plane occuring for a Co thickness of the or-
der of 1.3 nm. Below this thickness, the CIP resistance
increases dramatically and the resistance decreases with
temperature, as in Cermets, due to Coulomb blockade ef-
fects. In contrast, above 1.3 nm, the resistance increases
with temperature as usual in metallic films because of
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Fig. 2. In-plane resistance of a series of multilayers of the
composition Co tCo/ZrO2 3.5 nm.

Fig. 3. Plane view observations by transmission electron mi-
croscopy of a single layer of Co particles, of nominal thick-
ness 2 nm, inserted between 20 nm thick SiO2 layers. Top:
as-deposited sample; Bottom: after annealing at 300 ◦C for
1 hour.

phonon and magnon scattering. The CIP resistance varies
also significantly upon sample annealing. Anneals favor
the coalescence of the metallic patches into more compact
and rounder particles. This is illustrated in Figure 3 which
shows TEM plane views of single layers of Co inserted be-
tween SiO2 layers before and after a 300 ◦C annealing for
one hour. The coalescence of the Co particles is very clear
in Figure 3.
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Similarly the CPP resistance can be tuned over sev-
eral orders of magnitude by changing the thickness of the
insulating layer. The resistance of a tunnel barrier indeed
increases exponentially with its thickness.

The CIP transport properties are usually investigated
using a four-point probe geometry. Typical spacing be-
tween the voltage electrodes is a few millimeters. The CPP
transport properties can be measured by depositing metal-
lic crossed stripes at the bottom and top of the multilay-
ered structure. These electrodes are used for the current
and voltage contacts. The spacing between the electrodes
across the thickness of the multilayered structure is typ-
ically a hundred nanometers. There are therefore 4 or 5
orders of magnitude between the probe spacing in CIP and
CPP geometries. In metallic multilayers for which the CIP
and CPP resistivities are of the same order of magnitude,
this leads to an extremely low CPP resistance compared
to the CIP resistance [6]. However, in the present multi-
layers, the spacing between two particles belonging to the
same metallic plane is usually much smaller (less or of the
order of a nanometer) than the spacing between two par-
ticles belonging to adjacent planes (2 or 3 nanometers).
This results in an average CIP conductivity within the
metallic plane higher by several orders of magnitude than
the average CPP conductivity. Consequently, the much
larger spacing between the voltage probe in the CIP geom-
etry compared to the CPP geometry can be compensated
by the much higher CIP than CPP conductivity resulting
in the possibility of obtaining CIP and CPP resistances
of comparable orders of magnitude. We emphasize that
this is a rather unique feature of these systems. In metal-
lic multilayers, the CPP resistance is always much lower
than the CIP resistance. In tunnel junctions, the opposite
is true.

Qualitatively, the mixing between the CIP and CPP
regimes when RCIP and RCPP are of the same order of
magnitude shows up very clearly in the measurements
of the CIP I(V) characteristics. Indeed, in the pure CIP
regime, the I(V) characteristics should always be linear.
There are indeed typically 106 metallic particles and tun-
nel junctions connected in series between the CIP elec-
trodes. The voltage across each of these junctions is there-
fore a tiny fraction of the total voltage so that all of the
junctions operate in the linear part of their tunnel I(V)
characteristics. The situation is different in CPP geome-
try. Indeed, in that case, the number of particles and tun-
nel junctions acting in series between the CPP electrodes
is of the order of the number of repeats in the multilayered
structure (typically of the order of 10). The voltage across
each tunnel junction in the CPP geometry is therefore a
significant fraction of the total CPP voltage. If voltages
up to a few volts are applied, deviation from linear I(V)
characteristics can be observed.

In the limits RCIP � RCPP or RCIP � RCPP, pure
CIP or CPP regimes occur and the CIP characteristics
are linear. In contrast, if RCIP ≈ RCPP, a mixing between
CIP and CPP regimes occur so that non-linearities ap-
pear in the CIP I(V) characteristics. This is illustrated in
Figure 4 which shows CIP and CPP I(V) characteristics
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Fig. 4. CIP and CPP I(V) characteristics measured
on a discontinuous multilayer of the composition (Co, 2
nm/SiO2, 3 nm)16.

measured in discontinuous multilayers of the composition
(Co 2 nm/SiO2 3 nm)16 at various temperatures. In this
multilayer, the CIP resistance decreases from 300 kΩ at
5 K to 160 kΩ at 300 K whereas the CPP resistance de-
creases from 30 kΩ at 5 K to 230 Ω at 300 K. As in Cer-
mets, this increase of resistance at decreasing temperature
is due to Coulomb blockade effects. The larger increase
observed in CPP than in CIP implies that in CIP, be-
cause of the in-plane distribution of metallic particles, the
current can flow dominantly through relatively large par-
ticles for which the Coulomb blockade is not very effective
in the range of temperature investigated. In contrast, in
CPP transport, the current can be forced to flow through
smaller particles for which Coulomb blockade effects are
observable above 5 K. As a result, RCIP/RCPP is of the
order of 10 at 4 K and of the order of 1000 at 300 K.
Consequently, the I(V) characteristics are linear at 300 K
whereas a slight curvature is observed on the I(V) curves
at 5 K (see Fig. 4).

As explained previously, the metal/insulator granular
systems give rise to complex transport phenomena such
as Coulomb blockade effect. It is therefore difficult to sim-
ulate the transport properties of such systems. Many pa-
pers have studied the Coulomb blockade effects between
magnetic particles [7,8], but the results obtained are diffi-
cult to apply to an assembly of particles (in a macroscopic
sample counting about 106 particles). However, it may be
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possible thanks to simpler models to determine the shape
of the current lines for different values of the ratio RCIP

RCPP
,

and then to give a qualitative explanation to the curvature
of the I(V) CIP characteristics. In order to describe the
shape of the current lines in such macroscopic systems, we
propose two different techniques: the first one consists in
modeling the sample by a continuous anisotropic medium.
In this model, the discrete effects are not taken into ac-
count, but it is possible to obtain analytical expressions
of the current and of the resistance of the sample.

The second model takes into account these discrete
effects by modeling the sample with an anisotropic net-
work of resistances corresponding to the tunnel junctions
between successive metallic clusters.

2 Conformal transformations

In the first part of the paper, the system is modeled by
a continuous anisotropic medium. The shape of the cur-
rent lines is then derived by using conformal transforma-
tions1 in the complex plane (x, y). It immediately appears,
that discrete effects (such as the finite number of parti-
cles) are not taken into account by this method. Further-
more, the calculations will be made in the linear regime in
which the current is proportional to the potential. Conse-
quently, the curvature of the I(V) characteristics cannot
be modeled.

The conformal transformation calculation is a 2D cal-
culation, the system is then invariant by translation along
the z-axis. For the details of the calculations, see Ap-
pendix A.

2.1 Semi-infinite sample

First of all, we will study a semi-infinite sample (i.e. with
a given thickness, but with an infinite length, then corre-
sponding to an infinite stripe in the (X,Y ) plane), which
is is generally the case of macroscopic multilayers where
l > 100h (with l the length of the sample, and h its height).

Figure 5 shows the shape of the current lines in the
CPP configuration, while Figure 6 shows their shape in
the CIP configuration. One first notice that the boundary
conditions are respected since the equipotential lines are
perpendicular to the edges of the sample, i.e. no current
flows through these edges. Furthermore, it immediately
appears that the results of the calculation correspond to
the qualitative picture shown in Figure 1, thus indicating
a mixing between the CIP and CPP propagation modes
depending on the value of the ratio ε = σy

σx
.

Figure 7 shows the conductance of the sample as a
function of its thickness in CIP mode. It clearly evidences
a non-linearity of the conductance versus the thickness of
the film due to a change in the shape of the current lines as
the thickness of the film varies. This graph also shows that
this non-linearity is more or less pronounced depending on

1 for more details about this technique, see [9].
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Fig. 5. Shape of the current lines in semi-infinite CPP mode
for different values of the ratio ε =

σy
σx

. There is a constant cur-
rent step between two successive lines. The current source and
sink are the points of coordinates (0,h) and (0,0) respectively.

the inter-electrode spacing, since by varying this spacing,
the ratio of the resistances RCIP

RCPP
is varied. It is worthy to

notice that because of the point-like electrodes, the resis-
tance measured between the two electrodes should diverge.
In order to avoid this phenomenon, the extension of the
electrodes must be taken into account (see Appendix A.1).

2.2 Rectangular sample

The previous calculation, yielding simple equations, is
only valid for macroscopic samples (because of the as-
sumption of an infinite length). To model microscopic sys-
tems, we must consider the case of a rectangular sample
(see Fig. 17, rectangle 2). In order to avoid the divergence
of the resistance, we take into account the finite size of
the electrodes. As previously, we use the conformal trans-
formations to determine the shape of the current lines in
the system. The result is shown in Figure 8 for the CPP
configuration.
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Fig. 6. Shape of the current lines in CIP mode with finite
thickness for different values of the ratio ε =
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. There is a
constant current step between two successive lines. The current
source and sink are the points of coordinates (−d,0) and (d,0)
respectively. The dashed lines represent the equipotentials.
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Fig. 9. Characteristic resistance curves calculated by the con-
formal transformation method in CPP configuration. The re-
sistance is plotted as a function of the reduced parameter h∗
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Each curve corresponds to a given value of l∗

δ∗ .

As in the semi-infinite case (see Fig. 5), it appears
that the shape of the current lines strongly depends on
the ratio ε = σy

σy
. The resistance of such a sample is shown

in Figure 9 as a function of the reduced parameter h∗

δ∗

with h∗ = h√
σy

and δ∗ = δ√
σx

where h is the height of the
rectangle, and δ the width of the electrodes. Because of
the calculation method (see Appendix A.2), and in order
to keep a more general expression, the y-axis does not
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straightly represent the resistance R, but Rz√σxσy. Such
an abacus is available for any system, given its dimensions.
One notices that, as expected, the curve for l∗

δ∗ = 1 (where
l is the length of the sample and l∗ = l√

σx
) is a straight line

the slope of which is 1, i.e.: for a system with electrodes as
large as the sample, the resistance is proportional to the
aspect ratio of the rectangle. If the width of the sample is
then increased as compared to the size of the electrodes,
then the resistance decreases, becomes non-linear with h∗
and reaches a limit represented by the curve l∗ =∞ which
corresponds to an infinite stripe with finite electrodes.

The continuous approximation allows to derive scaling
behaviors for the transport properties in these anisotropic
materials. However, it is valid only if the extension of
the current lines covers a large number of metallic planes
which is not always the case in experiments. In particular
if the spacing between metallic layers is large, all of the
current may flow only in the first metallic plane. The ma-
terial in CIP configuration cannot then be treated in an
homogeneous approximation.

3 Anisotropic network of resistances

In order to get a better description of the transport prop-
erties of the multilayers in CIP transport when RCIP �
RCPP or when the number of planes is small, we now take
into account the discreetness of the system by considering
it as a network of resistances consisting of L lines (i.e., L
metallic layers) and M clusters in each line. This network
is a 2D system, so that the system is considered invariant
by translation along the z-axis. Two different values of re-
sistance are introduced in order to simulate the anisotropy
of the multilayer:

– r is the in-plane resistance corresponding to the resis-
tance of a tunnel junction separating two neighbouring
clusters within the same plane;

– R is the out-of-plane resistance corresponding to the
resistance of the tunnel junction between two clusters
of successive planes;

– q = r
R ·

It should be noticed that the small number of planes
in the growth direction (usually about ten) is better de-
scribed by this method. Furthermore, this technique may
be used to study inhomogeneous multilayers in which the
resistance between two successive planes may vary from
one plane to another (various oxide thickness for instance).
We point out that in reference [10], a discreetness was
also introduced in the direction perpendicular to the plane
but the layers themselves were treated as continuous. This
approximation is reasonable for macroscopic samples but
may also reach a limit for microscopic samples prepared
by lithography because of the reduced number of clus-
ters in each layer (in this case, typically 100 × 100 for a
1 µm× 1 µm junction).

1

2

3

4

L-1

L

1 2 3 4 MM-1r

R

I
p

α i, βi α ’ i, β’ i

x = 0

CIP
Mirror plan

Fig. 10. Model of multilayer using a network of anisotropic re-
sistance. The current source is placed on top of the pth column,
and the potential at every intersection is noted V ni .

3.1 Simulation of a CIP measurement

We first describe the technique in the CIP configuration.
We are interested in the value of the potentials at ev-
ery intersection of the network. This potential is noted
V ni where i represents the lines and n the columns (see
Fig. 10).

Using the Kirschoff law at the intersections:
∑
I = 0,

and the Ohm law, the following relations are obtained:{
i 6= 1, L : V n+1

i = 2(1 + q)V ni − qV ni−1 − V n−1
i − qV ni+1

i = 1, L : V n+1
i = 2

(
1 + q

2

)
V ni − qV ni−1 − V n−1

i .

The first and last lines of the sample have to be distin-
guished from the others, since they have only one neigh-
bouring plane instead of two.

So, the system may be represented by the iterative
equation:

V n+1 = AV n − V n−1

where A is the (L×M) matrix:
2 + q −q 0 0 0
−q 2(1 + q) −q 0 0

0 −q . . . −q 0
0 0 −q 2(1 + q) −q
0 0 0 −q 2 + q

 .

This matrix is then diagonalized, and the potentials
in the multilayer are represented by a matrix U with
U = P−1V (where P is the matrix that diagonalizes A,
and V the matrix of the potentials in the physical system):

Uni = αiµ
n
i + βiη

n
i (1)

where αi and βi are coefficients determined by the bound-
ary conditions which will be determined further and ηi
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Fig. 11. Map of the equipotential lines obtained for differ-
ent values of q using a network of resistance and 10 layers in
CIP mode. There is a constant potential step ∆V between two
successive lines.

and µi are the eigenvalues of the matrix A. It is important
to notice that the first eigenvalue of A is 2. Therefore, the
first line of the multilayer is represented by an arithmetic
series: Un1 = α1n+ β1.

In order to make the calculation easier, we use a ver-
tical plane as symmetry plane. This symmetry plane can
be considered connected to the ground (first condition).
Furthermore, we assume that no current flows perpendic-
ular to the left side of the sample (second condition), the
boundary conditions are written:{

1) VM = 0
2) V −1 − V 0 = 0.

Finally, by calculating the coefficients αi and βi (see
Appendix B.1), U is known everywhere, and the matrix
of potentials in “real” space V may be determined by the
equation: V = PU . It is therefore possible to plot a map
of the potentials (see Fig. 11). One notices that in this
model, even in the case of a strong anisotropy, the current
is forced to flow through at least one metallic layer.
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Fig. 12. Resistance in CIP mode as a function of the number
of layers L for q = 10−5 and r = 1 Ω.

The resistance is given by:

RCIP = 2

∣∣∣∣∣
∑L
i=1 Ψ

(1)
i Upi
I

∣∣∣∣∣ = 2
V p1
I

(2)

where Ψ (n)
i is the first component of the ith eigenvector.

Figure 12 shows the conductivity plotted versus the num-
ber of layers. It exhibits a non-linear behavior, and in this
example, it appears that the most important part of the
current flows in the ten first layers.

3.2 Simulation of a CPP measurement

In CPP mode, the general technique is the same, but the
boundary conditions are modified: the plane x = 0 is now
taken to be a mirror plane.

The boundary conditions are then written1) V 1 − V 0 = 0
2) VM − VM−1 = 0
3) V nL = 0 ∀n

where the two first conditions express that no current flows
respectively through the left and right sides of the sample
and the third one expresses that the Lth plane is grounded
(see the details of the calculation in Appendix B.2).

Figure 13 shows a map of equipotential lines. The resis-
tance is still given by formula 2 because of the symmetry
consideration (see Fig. 14): thanks to the chosen symme-
try planes, the expression of the resistance is always twice
the potential of the electrode. Once more, Figure 14 clearly
shows the non-linearity of the CPP resistance versus spac-
ing of the voltage contacts.

As can be seen in Figures 11 and 13, for large val-
ues of M (number of clusters within a given plane), the
network behaves as the anisotropic continuous approxima-
tion, demonstrating that this approximation is correct in
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Fig. 13. Map of the equipotential lines obtained for different
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mode.
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this limit. Moreover, the resistance variations versus dis-
tance between contacts for discrete and continuous models
both indicate differences from the classic law: R = ρl

S due
to the combined effect of CIP and CPP transport in these
systems.

4 Conclusion

In this paper, we presented 2 methods to determine the
shape of the current lines in discontinuous multilayers and
calculate the CIP and CPP resistances. The comparison
of the results obtained by the network of resistances and
those obtained in a continuous anisotropic system showed
that this last approximation is correct in the limit where
the current lines extend over a large number of metallic
planes.

These calculations also demonstrated that when RCIP

and RCPP are of the same order of magnitude, the mea-
sured transport properties are a combination of both CIP
and CPP transport making difficult the interpretation of
the experimental I(V) curves. Furthermore, the active area
through which the current flows in a CPP measurement
strongly depends on the ratio σy

σx
, changing from the elec-

trode surface to the surface of the whole sample. Simi-
larly, in CIP mode, the number of layers in which a non-
negligible current flows depends on this ratio. It is there-
fore necessary to be very cautious when interpreting I(V)
curves for such samples which cannot correctly be mod-
eled by the Simmons equation [11].

The authors wish to thank Pascale Bayle-Guillemaud for the
TEM pictures of Figure 2.

Appendix A: Details of the conformal
transformation technique

In this calculation, we consider the discontinuous multi-
layers as continuous samples with anisotropic conductiv-
ity: (σx, σy) due to the different spacings between clus-
ters in and out of plane. In order to determine the shape
of the current lines and the resistance of the samples,
we use complex variables and conformal transformations.
This technique only allows 2D calculations in the (x, y)
plane. Therefore, the electrodes are supposed to be elon-
gated stripes in the z-direction. We then have to solve the
equation:

σx
∂2Φ

∂x2
+ σy

∂2Φ

∂y2
= 0.

Because of the anisotropy of the conductivity, this equa-
tion is not a real Laplace equation and then the real and
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imaginary parts of Φ do not respect the Cauchy conditions,
and the conformal transformations may not be used.

∂2Φ

∂X2
+
∂2Φ

∂Y 2
= 0

so, we need to introduce new variables (X,Y ) in the equa-
tion describing the system in order to get a Laplace equa-
tion (as written above). These new variables are given by:

X → x√
σx
, Y → y

√
σy

and so on for every length involved in the calculation.
This gives rise to an intermediate isotropic system with a
conductivity: σ∗. Therefore, the real and imaginary parts
of the complex potential Φ = φ + iψ respect the Cauchy
conditions in the (X,Y ) plane. Its real part φ corresponds
to the potential while the imaginary part ψ corresponds
to the current.

A.1 Semi-infinite sample

The shape of the current lines in such a system may not
be straightly derived because of the boundary conditions
expressing that no current flows through the surface of the
sample. However, their shape may be derived in a simpler
system which is then transformed into an infinite stripe
thanks to a conformal transformation. Such a transforma-
tion is defined to conserve the angle between two curves
so that the orthogonality between the equipotential and
the current lines is then conserved2.

The equation of the current lines is first determined in
the simplest system: i.e., the upper semi-plane (ζ, η) (see
Fig. 15) in which a source and a sink are placed on the
real axis at coordinates (± 1) (see Fig. 16):

V =
a

π
log

ξ − b
ξ + b

where π normalizes the current to unity. The transfor-
mation leading from the upper semi-plane to an infinite
stripe is:

Z =
a

π
log

ξ

b
· (3)

For simplicity, we choose b = 1 and a is chosen in order to
represent the height of the physical thickness. We imme-
diately find: a = h√

σy
where a corresponds to the height

of the rectangle in the (X,Y ) plane. So, by replacing ξ
by its expression (given by Eq. (3)) in the equation of the
complex potential V , we find the equation of the complex
potential in the (X,Y ) plane, and therefore in the (x, y)
plane:

Φ = log
{

tanh
[
π
√
σy

2h

(
x√
σx

+ i
y
√
σy

)]}
·

2 The current and equipotential lines are mutually perpen-
dicular only if the system is isotropic.

0 1-1

A BC

B

0

A+

A-

D E

E

D

a log(ξ)

ζ

η

x

C

y

a

Fig. 15. The two steps of the conformal transformation in the
case of an infinite stripe are shown here. In the case of a CPP
propagation, the electrodes are placed at the points C and B.

In the CIP case, their position are given by e−
πd
a and e

πd
a .

-1 0 1

Fig. 16. Equipotentials (top) and current lines (bottom) in the
upper semi-plane. The dashed lines represent the equipotential
lines.

The shape of the current lines (imaginary part ψ of Φ) is
shown in Figure 5 for different values of the ratio ε = σx

σy
.

To calculate the resistance of the sample, we consider
the expression of the real part of Φ:

φ =
1
2

log

cosh πx
h

√
σy
σx
− cos πyh

cosh πx
h

√
σy
σx

+ cos πyh

 ·
In order to avoid the divergence of the potential on the
electrodes, we give these electrodes a finite size ∆, and we
assume that the interface between the sample and these
electrodes has the same shape as the equipotential lines
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*

1 2

F(b,1,p)C

δ

Fig. 17. Description of the different steps of the transformation: the resistance of the system is simply proportional to the aspect
ratio of the rectangle 1, the rectangle 2 being the physical one after renormalization by the square root of the conductivities. In
the upper semi-plane (ζ,η), one of the electrodes extends from −a to +a while the other extends from +b to +∞ and from −b
to −∞, since the points (±∞) become a single point after transformation (corresponding to the point C).

calculated above. Within this assumption, the presence of
the electrodes does not perturb the system.

The resistance is then simply given by:

RCPP =
1
I

[
Φx=∆
y=0
− Φx=∆

y=h

]
.

This yields:

RCPP =
1
π

log

∣∣∣∣∣∣
cosh

(
π∆
h

√
σy
σx

)
+ 1

cosh
(
π∆
h

√
σy
σx

)
− 1

∣∣∣∣∣∣ ·
In CIP mode, the transformation used is the same as in
CPP mode. The only difference is the position of the elec-
trodes. In order to obtain two electrodes on the same side,
we have to place the corresponding points in the semi-
plane on the positive side of the ζ-axis, on both sides of
the point +1 which will become the origin of the (x, y)
plane after the transformation. If the electrodes in the
physical system are placed at the points +d and −d, then
(according to Eq. (3)) their positions in the semi-plane
are:

ζ1 = e−
πd
a

ζ2 = e
πd
a .

The complex potential is then written:

Φ = log

e
π
√
σy
h

�
x√
σx

+i y√
σy

�
− e−

πd
h

q
σy
σx

e
π
√
σy
h

�
x√
σx

+i y√
σy

�
− e

πd
h

q
σy
σx


and the shape of the corresponding current lines is shown
in Figure 6.

The real part (corresponding to the potential) is given
by:

φ = log

e−
2πd
h

q
σy
σx

cosh π(d+x)
a

√
σy
σx
− cos πyh

cosh π(d−x)
a

√
σy
σx
− cos πyh


which yields an expression of the resistance:

RCIP = log

cosh 2πd
h

√
σy
σx
− 1

cosh π∆
h

√
σy
σx
− 1


where ∆ is the width of the electrodes.

A.2 Rectangular sample

As in the case of a semi-infinite sample, the shape of the
current lines in such a system cannot be straightly calcu-
lated. However, if we consider a rectangle the two opposite
sides of which are equipotentials, the current lines and the
equipotentials are simply the vertical and horizontal lines
respectively (Fig. 17, rectangle 1). So, we have to find
a transformation that transforms this rectangle into the
physical system (see Fig. 17, rectangle 2). This is made by
the well-known Schwarz-Cristoffel transformation which
transforms the upper semi-plane into a closed polygon,
assuming an intermediate step: the upper semi-plane, as
shown in Figure 17. This kind of calculations has already
been performed in the case of an isotropic rectangle with
punctual electrodes [12] in order to determine the conver-
sion factors leading to the resistance by square. However,
in our case, the simulation is made with finite electrodes.
We write here the Schwarz-Cristoffel transformation for a
rectangle, and its inverse function (which is a function of
the Jacobi Elliptic function).
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The Schwarz-Cristoffel transformation is given by:

Z = A

∫ ξ

0

dt√
(t2 − α2) (t2 − β2)

+B = AF (ξ, α, β) +B

where the points (±α), (±β) (called characteristic points)
in the upper semi-plane (ζ,η) correspond to the angles of
the rectangle in the Z plane, and B = 0 if ξ = 0 corre-
sponds to z = 0.

Its Inverse function is defined as:

ξ =
1
α

Sn
(
βZ,

α2

β2

)
·

Knowing h, l (respectively the height and length of
the physical system) and δ the width of the electrodes,
we have to deduce 4 important points in the upper semi-
plane (instead of 2 for the infinite stripe): two of them
(a and b) corresponding to the width of the electrodes,
while the two others (p and q) stand for the coordinates
of the corners of the rectangle. For simplicity, we choose
q = 1. So, starting from the upper semi-plane, if we choose
α = 1 and β = p, the Schwarz-Cristoffel transformation
leads to the physical system. On the opposite, if we choose
α = a and β = b, it leads to a rectangle the two horizontal
sides of which are the electrodes. As in the case of a semi-
infinite sample, every length involved in the calculation is
redimensioned (and called equivalent length) and denoted
by a star: l∗ = l√

σx
and h∗ = h√

σy
. The values of the

points p, a and b are now simply deduced from geometrical
considerations. In order to calculate the value of p, the
following equation has to be solved (which is done in a
numerical way):

Arg[F (p, 1, p)] = −ArcTan
(

2h∗

l∗

)
where Arg is the function giving the argument of a com-
plex number.

Knowing p, we may deduce the value of the Schwarz-
Cristoffel pre-factor A:

A =
2F (1, 1, p)

l∗
·

Finally, a and b corresponding to the position of the
electrodes are deduced: a is given by:

F (a, 1, p) = A
δ∗

2

and b may be deduced:

F (a, 1, p) = Re[F (b, 1, p)].

So, by now applying the Schwarz-Cristoffel F (ξ, a, b),
we obtain the rectangle 1. Its two opposite sides are
equipotentials, and its aspect ratio is proportional to the
resistance of the physical rectangle. This aspect ratio is
given by:

R′ =
1
2

tan[Arg[F (b, b, a)]].

In order to determine the expression of the resistance
of the real system, we may write the current flowing
through the system:

I = jS =
σ∗zδ′V

h′

where V
h′ is the electric field, z: the depth of the sys-

tem, σ∗ the conductivity, δ’ and h’ respectively the width
and height of rectangle 1. The resistance is then simply
given by:

R =
h′

σ∗zδ′

h′

δ′ being the aspect ratio of rectangle 1, we may write:

R′ = Rσ∗z.

To determine the expression of σ∗, we compare the
expression of the resistance of a rectangle the electrodes
of which occupy the whole width of the sample, before and
after the normalization of the distances:

– Before renormalization: R = h
σ∗zδ

√
σx
σy

– After renormalization: R = h
σyzδ

.

By identification, we obtain:

σ∗ =
√
σxσy .

This yields the relation between R and R′:

R′ = Rz
√
σxσy

which is the vertical axis of Figure 9.
Finally, knowing the shape of the current and equipo-

tential lines in such a simple system (they are vertical and
horizontal lines, respectively), we may apply the reverse
process to obtain their equations in the physical system:

– In rectangle 1:

Φ′ = i
V1 − V2

2
z

h′
+
V1 + V2

2

where V1 and V2 are the potentials of the electrodes.
– In rectangle 2 (after applying the successive conformal

transformations):

Φ = i
V1 − V2

2h
F

(
F−1

(
x√
σx

+ i
y
√
σy
, 1, p

)
, a, b

)
+
V1 + V2

2
·

The calculations for the CIP mode are not detailed
here, since the results may be obtained by the same pro-
cess and by changing the positions of the characteristic
points of the Schwarz-Cristoffel transformation.
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Appendix B: Details of the calculation
in the case of a network of resistances

The multilayer is now represented by a network of resis-
tances in which we are interested by the value of the po-
tentials at each intersection (see Fig. 10). The system is
mathematically represented by a matrix V .

B.1 CIP configuration

In order to make the calculation easier, we use the sym-
metry of the system and assume a vertical plane to be a
mirror plane (it is therefore equipotential and linked to
the ground: i.e. Vmirror

plane
= 0). This means that the stud-

ied system contains (2M−1) clusters in each plane and L
metallic layers, but the calculations will be made with only
M clusters and a single source (which will become a sink
by symmetry).

The characteristic equation X2 − λiX + 1 = 0 of the
system, corresponding to the series V n+1 = AV n − V n−1

obtained by applying the Kirschoff’s law, (where λi are
the eigenvalues of the matrix A) is easily solved. We find
two solutions noted µi and ηi:µi = λi−

√
λ2
i−4

2

ηi = λi+
√
λ2
i−4

2 ·

The system is now described in the eigenvectors space by
the equation: Uni = αiµ

n
i + βiη

n
i .

To determine the potentials, the system is separated
into two parts on both sides of the source, so that we
have 8 coefficients to determine: α1, αi, β1, βi (on the left
side of the source), and α′1, α′i, β

′
1, β′i (on the right side),

since as explained in Section 3.1, the first line has to be
distinguished from the others because its corresponding
eigenvalue is equal to 2. In order to fully determine the
system of equations, it is necessary to introduce the linking
condition between these two parts. The source is therefore
considered as point-like, and located on top of the pth
column. This perturbation is represented by the vector S
given by:

S =


I
0
...
0
0

 .

These boundary conditions give rise to a system of 6
equations which has to be solved:

α1 + β1 = β1

αiηi + βiµi − αi − βi = 0
α′1M + β′1 = 0
α′iη

M
i + β′iµ

M
i = 0

Up1(left) = Up1(right)

Upi(left) = Upi(right).

By combining the 4 first equations, we obtain:

α1 = 0
αi = −βi µi−1

ηi−1

α′1 = −β
′
1
M

α′i = −β′i
(
µi
ηi

)M
β′1
(
1− p

M

)
βi = β′i

1−
�
µi
ηi

�M−p

1−µi−1
ηi−1

�
ηi
µi

�p ·

Finally, the introduction of the source with a current
unity creates a perturbation which is taken into account
by applying the Kirschoff’s law on the pth column. The
result of the Kirschoff’s law is then converted to be applied
to the matrix U and gives:

Up+1 + Up−1 = (P−1AP )Up + P−1

(
1
0
)

where P−1AP is simply the ith eigenvalue λi of the ma-
trix A (depending on the number i of the studied line).

This finally yields:

β′i = −P−1S

ηp+1
i

1−
(
ηi
µi

)M−p−1

(1− ηi − 1
µi − 1

(
µi
ηi

)p)

+

(
1−

(
ηi
µi

)M−p)(
1− ηi − 1

µi − 1

(
µi
ηi

)p−1
)
ηp−1
i

−λi

(
ηpi −

(
ηi
µi

)M
µpi

)]−1

;

α′i = −β′i

(
ηpi −

(
ηi
µi

)M
µpi

)
;

βi = β′i

1−
(
ηi
µi

)M−p
1− ηi−1

µi−1

(
µi
ηi

)p ;

αi = −βi
ηi − 1
µi − 1

;

β′1 = −MP−1S;

α′1 = −β
′
1

M
;

β1 = β′1

(
1− p

M

)
;

α1 = 0.

The matrix U is now completely defined, and we may
deduce the value of every element of the matrix V by using
the relation: V = PU .

B.2 CPP configuration

The boundary conditions are now modified. No current
flows through the lateral sides of the sample, and the plane



F. Ernult et al.: Modeling of the current lines in discontinuous metal/insulator multilayers 189

x = 0 is considered as a mirror plane. Since this plane is
considered to be a mirror plane, it appears that it is neces-
sary to distinguish the two cases of odd or even number of
layers. For example, if the simulation is made with L = 5,
this means that there are 10 or 11 layers, depending on the
matrix which is used, i.e. the exact symmetry plane is lo-
cated either on a metallic plane or between two successive
metallic planes.

In the odd case,


2 + q −q 0 0 0
−q 2(1 + q) −q 0 0

0 −q . . . −q 0
0 0 −q 2(1 + q) −q
0 0 0 −q 2(1 + q)

 .

In the even case:


2 + q −q 0 0 0
−q 2(1 + q) −q 0 0

0 −q . . . −q 0
0 0 −q 2(1 + q) −q
0 0 0 −q 2 + 3q

 .

As in the CIP case, the coefficients determining the
elements of the matrix U must be calculated thanks to
the boundary conditions. It is important to notice that
because no eigenvalue is equal to 2, every layers are repre-
sented by an equation similar to equation 1, so that there
are only 4 coefficients to calculate: αi, βi, α′i, β

′
i.

The boundary conditions expressing that no current
flows through the left and right side of the sample
and that the plane x = 0 is grounded and the linking
condition lead to the new system of equations:


αiηi + βiµi − αi − βi = 0

α′iη
M
i + β′iµ

M
i − α′iηM−1

i − β′iµM−1
i = 0

Upi(left) = Upi(right).

By combining these equations and by introducing the
linking condition (which has the same expression as in
the CIP configuration given by the Eq. (B.1)), we find:

β′i = −P−1S

[
ηM−1
i − ηMi
µMi − µM−1

i

µp+1
i + ηp+1

i

+

 ηM−1
i −ηMi
µMi −µ

M−1
i

µpi + ηpi
1−ηi
µi−1µ

n
i + ηni

( 1− ηi
µi − 1

µp−1
i + ηp−1

i

)

−λi

(
ηM−1
i − ηMi
µMi − µM−1

i

µpi + ηpi

)]
;

α′i = β′i
ηM−1
i − ηMi
µMi − µM−1

i

;

βi = β′i

ηM−1
i −ηMi
µMi −µ

M−1
i

µpi + ηpi
1−ηi
µi−1µ

p
i + ηpi

;

αi = βi
1− ηi
µi − 1

·
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